Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Alana Jacobson with Sara Obama, President Obama's grandmother
Our team and audience
Postdoc Will Sharpee looking for whiteflies on the backs of cassava leaves
George Kennedy collecting whiteflies
Postdoc Gaby Chavez on local transport
Whiteflies
All of our samples

Why prioritize the Cassava Mosaic Virus?

Cassava is a major food crop in Africa and Asia. Cassava can grow under drought, high temperature and poor soil conditions, but its production is severely limited by viral diseases. Cassava Mosaic Disease (CMD) is one of the most economically important crop diseases in Africa.

TWITTER BLOCK

New review: Whitefly-transmitted viruses threatening cassava production in Africa (Jacobson, Duffy, and Sseruwagi;… https://t.co/bSUuVcDv5U
RT : Cassava Mosaic Disease (CMD) is threatening the livelihoods of 15 million farmers in Southeast Asia. We're funding… https://t.co/ekF7e7uJxv
RT : For the FANS of segmented and multipartite viruses - see our review titled "Notes on recombination and reassortment… https://t.co/m90Qp5oCXg
RT : 2nd of 2 tweets: list of funding awards from the 1st CONNECTED pump-prime call Join our https://t.co/EPW368bxmw
RT : Here's the full list of funding awards from the 1st CONNECTED pump-prime call (1 of 2 tweets) To get info… https://t.co/jTZCDECbhC