Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Welcome to Cassava Virus Evolution!
Molecular evolution of plant viruses occurs through a combination of point mutations, recombination and reassortment of viral genome components. These processes produce a high degree of variation that undergoes selection to generate a subset of viral variants well adapted to their plant hosts and efficiently transmitted by their insect vectors.
Alana Jacobson with Sara Obama, President Obama's grandmother
Our team and audience
Postdoc Will Sharpee looking for whiteflies on the backs of cassava leaves
George Kennedy collecting whiteflies
Postdoc Gaby Chavez on local transport
Whiteflies
All of our samples

Why prioritize the Cassava Mosaic Virus?

Cassava is a major food crop in Africa and Asia. Cassava can grow under drought, high temperature and poor soil conditions, but its production is severely limited by viral diseases. Cassava Mosaic Disease (CMD) is one of the most economically important crop diseases in Africa.

TWITTER BLOCK

RT : A bad, bad dream, or so it seems! The worst days of the mosaic disease pandemic that devastated East & Cen… https://t.co/JlWOJxaUyQ
“we report the structure of 𝘈𝘨𝘦𝘳𝘢𝘵𝘶𝘮 yellow vein virus at 3.3  Å resolution, using single-particle… https://t.co/JaP6t834xM
RT : BREAKTHROUGH - “The big surprise was that the virus coat protein can adopt different conformations, which helps to… https://t.co/0PHwkQg4KV
Lovely photo! Looking forward to learning more about Tony and your team's hypotheses and results!
Thanks to all who tweeted or contributed to ! Lots of exciting and inspiring work https://t.co/H0Jj0tQpF6